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The concept of stoichiometrically unique reactions (response reactions, RERs) is extended to the group additivity
(GA) methods. Namely, it is shown that the main assumption of the GA methods according to which chemical
species may be “constructed” from a specified number and type of structural units, or groups, may be formally
appended to the conventional RER formalism. As a result, one can define and generate a stoichiometrically
unique class of GA RERs. Several properties and applications of the newly defined GA RERs are pointed
out. In particular, it is proved that the stoichiometry and thermodynamic functions of the GA RERs are
interrelated in a simple manner with the error of the GA methods. This finding is used to reformulate the GA
methods alternatively (and equivalently), in terms of GA RERs.

1. Introduction

Although much more sophisticated and exact ab initio
methods1 are becoming increasingly available, the importance
of the classical group additivity (GA) methods2-6 is not
diminishing. The use of GA methods was shown to be a
valuable, effective, and inexpensive technique for the estimation
of thermodynamic properties of pure species, even in the era
of supercomputers. Moreover, the basic ideas of the GA methods
are extensively used to convert the total energies obtained from
ab initio calculations to conventional thermodynamic functions.
It is well-known that the main assumption of the GA methods
is that the thermodynamic properties of the chemical species
may be partitioned into a sum of contributions associated with
a small number of structural units. The thermodynamic proper-
ties of the structural units are further assumed to be independent
of the nature of the species and may be determined using a
representative database of species with known thermodynamic
properties. It is often assumed that the GA methods are powerful
but limited in scope, in regard to estimation of gas-phase
enthalpies of formation of organic compounds, and, perchance,
estimation of gas-phase entropies and heat capacities. This
assumption is not true: their ability and capability are greater
yet. Without meaning to be exhaustive, we mention just a few
representative applications from various areas. Thus, GA has
been used for decades by the engineering community for the
estimation of Lennard-Jones parameters, critical constant esti-
mations, boiling points, etc.7 It has even been used for octane
ratings.8 Some comprehensive applications to the condensed-
phase thermochemistry of organic molecules include estimations
of enthalpies of formation, heat capacities, absolute entropies
and entropies of formation, and phase change entropies and
enthalpies: we refer the reader to the extensive studies of
Chickos, Domalski, and their respective colleagues.9,10 Finally,

the GA methods have been successfully applied to estimate the
energetics of free radicals, inorganic and organometallic com-
pounds,11 and aqueous species.12

Although both the physicochemical and computational aspects
of the GA methods have been exhaustively discussed in the
literature, it seems that the stoichiometric aspect of the GA
methods has been overlooked. Here, the term “stoichiometric”
is used in the following context. As was recognized by Benson,2

there exists a hierarchy of additivity schemes. Several levels of
approximation exist within this hierarchy. The first level is the
atom additivity, followed by the second level (bond additivity),
the third level (group additivity), etc. Clearly, the first level is
absolutely valid for molecular masses. In fact, the atom
additivity is the mathematical expression of the mass balance
in the system. As follows from chemical stoichiometry, an
alternative (and equivalent) way to express the mass balance in
a chemical system is via a set of stoichiometrically independent
reactions. The main characteristic of these reactions is the
conservation of the number and type of atoms. Generalizing
this simple observation, one can alternatively express the GA
of chemical species in terms of a set of stoichiometrically
independent reactions that, in addition to mass, also preserves
the type and number of bonds, groups, etc. Assuming that the
GA is absolutely valid (such as mass balance, for instance)
would result in chemical reactions that have a remarkable
property. Namely, a property change of these reactions should
be equal to zero. For instance, if the property of the species is
the enthalpy of formation, then a reaction that precisely preserves
the type and number of groups would be thermoneutral; i.e., it
has an enthalpy change equal to zero.

We have recently addressed the problem of using special
classes of stoichiometrically unique chemical reactions, called
response reactions (RERs),13 to convert accurately the total
energies obtained from ab initio calculations into enthalpies of
formation of the species.14 The purpose of the present work is
to extend the RERs approach to the GA methods. More
specifically, we show that the group-preserving conditions may
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be easily incorporated into the RERs formalism. As a result,
one can visualize, generate, and enumerate a special class of
stoichiometrically unique GA reactions, e.g., GA RERs. Because
of their stoichiometric uniqueness, we further show that the GA
methods may be reformulated in terms of RERs. In particular,
the properties of the species may be evaluated without explicitly
determining the values of the group contributions.

2. Notation and Definitions

We consider a general multiple chemical reaction system
comprising a set ofn species A1, A2, ..., An. Each of the species
in this system is characterized by a certaincompositionand
structure. Here, the term “composition” means a specified
numbers of elements B1, B2, ..., Bs, e.g., any set of stoichio-
metrically appropriate atomic, molecular, or ionic entities that
may be used to “construct” the species Ai:

Here,âil (i ) 1, 2, ...,n; l ) 1, 2, ...,s) is the number of elements
Bl in species Ai. The matrixâ,

is normally called the formula matrix.15 For simplicity, we
assume that the rank of the formula matrix is equal to the
number of elementss, i.e., rankâ ) s.

The term “structure” of the species means a specified typegj

(j ) 1, 2, ...,p) and numbergij (i ) 1, 2, ...,n; j ) 1, 2, ...,p)
of groups in a chemical species Ai (i ) 1, 2, ...,n). Here, the
term “group” is used in exactly the same sense as in the
conventional GA methods; that is, “a polyvalent atom (ligancy
g 2) in a molecule together with all of its ligands”.3 Thus, we
can define the matrixg′, which may be called the group matrix.

For simplicity, in this work, we consider only one property,
namely, the ideal gas-phase standard enthalpy of formation
of the species Ai (i ) 1, 2, ...,n), conventionally denoted by
∆fH°298(A i). If ∆fH°298(gj) is the group value ofgj (j ) 1, 2, ...,
p), then we have

or, in a more concise matrix form,

The formula and group matrices may be further combined
into one formula-group matrix:

The formula-group matrix is a quantitative characteristic of
both the composition and the structure of a chemical system.
Normally, the columns in this matrix are linearly dependent;
that is, rankΓ′ ) q < s + p. For our purposes, however, we
need to consider only an arbitrarily chosen subset of linearly
independent columns from the formula-group matrix. We choose
them by performing a column reduction operation on the
formula-bond matrix, such that

whereajh andbkh are constants. Thus, we can define areduced
formula-bond matrix,

in which the columns are linearly independent and, conse-
quently, rankΓ ) q.

Consider further a general chemical reactionr:

where νi (i ) 1, 2, ..., n) are the stoichiometric coefficients
assumed as usual to take positive values for products and
negative for reactants. Obviously, every chemical reaction
satisfies the mass-balance conditions

It is well-known15 that, in the absence of any other additional
stoichiometric constraints, the number of linearly independent
reactionsm is equal tom ) n - rank â ) n - s.

A reaction that concomitantly satisfies the group-preserving
conditions

(∆fH°298(A1)
∆fH°298(A2)
...
∆fH°298(An)

) ) [g11 g12 ... g1p

g21 g22 ... g2p

... ... ... ...
gn1 gn2 ... gnp

](∆fH°298(g1)
∆fH°298(g2)
...
∆fH°298(gp)

)
Γ′ ) [â11 â12 ... â1s g11 g12 ... g1p

â21 â22 ... â2s g21 g22 ... g2p

... ... ... ... ... ... ... ...
ân1 ân2 ... âns gn1 gn2 ... gnp

] (4)

∑
j)1

s

ajh[â1j

â2j

...
ânj

] + ∑
k)1

p

bkh[g1k

g2k

...
gnk

] ) [Γ1h

Γ2h

...
Γnh

] (h ) 1, 2, ...,q) (5)

∑
j)1

s

ajh[â1j

â2j

...
ânj

] + ∑
k)1

p

bkh[g1k

g2k

...
gnk

] ) [00...
0

]
(h ) q + 1, q + 2, ...,s + p) (6)

Γ ) [Γ11 Γ12 ... Γ1q

Γ21 Γ22 ... Γ2q

... ... ... ...
Γn1 Γn2 ... Γnq

] (7)

r ) ν1B1 + ν2B2 + ... + νnBn ) 0 (8)

ν1â11 + ν2â21 + ... + νnân1 ) 0

ν1â12 + ν2â22 + ... + νnân2 ) 0
·
·
·

ν1â1s + ν2â2s + ... + νnâns ) 0 (9)

A i ) ∑
l)1

s

âliBl (1)

â ) [â11 â12 ... â1s

â21 â22 ... â2s

... ... ... ...
ân1 ân2 ... âns

] (2)

g′ ) [g11 g12 ... g1p

g21 g22 ... g2p

... ... ... ...
gn1 gn2 ... gnp

]

∆fH°298(A1) ) g11∆fH°298(g1) +
g12∆fH°298(g2) + ... + g1p∆fH°298(gp)

∆fH°298(A2) ) g21∆fH°298(g1) +
g22∆fH°298(g2) + ... + g2p∆fH°298(gp)

·
·
·

∆fH°298(An) ) gn1∆fH°298(g1) +
gn2∆fH°298(g2) + ... + gnp∆fH°298(gp) (3)
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is called a GA reaction. Given eqs 5 and 6, a GA reaction may
be alternatively defined as one that satisfies the condition

We mention also that the number of linearly independent GA
reactions is equal tom ) n - rankΓ ) n - q. A set of linearly
independent GA reactions may be derived by solving eq 11,
using any appropriate linear algebra procedure and numerical
analysis.

3. GA RERs

The RERs formalism discussed in detail in our previous
publications may be easily generalized. Thus, by analogy with
conventional13 and isodesmic14 RERs, we can define a new type
of RER.

Definition: A reaction that is additionally subject to group-
preserVing conditions and inVolVes no more than (rankΓ + 1)
) q + 1 species is called a GA RER.

Let Ai1,Ai2,...,Aiq,Aiq+1 (1 e i1 < i2 < ... < iq < iq+1 e n) be
the q + 1 species involved in a GA RER. Such a RER is de-
noted by g(A i1,Ai2,...,Aiq,Aiq+1), and its general equation is
given as

A complete set of GA RERs may be generated by considering
all the possible choices ofq + 1 species from a total ofn.
In other words, the total numberN of GA RERs does not
exceed

It is to be noted that not necessarily all the GA RERs are
stoichiometrically distinct. That is, some of the stoichiometric
coefficients in a GA RER (or, even all) may be equal to zero,
thus resulting in stoichiometrically equivalent isostoichio-
metric RERs. Even so, the number of stoichiometrically dis-
tinct GA RERs exceeds the number of linearly independent
ones.

The enthalpy changes of the GA RERs denoted as∆H(g) )
∆H(A i1,Ai2,...,Aiq,Aiq+1) are interrelated with the standard en-
thalpies of formation∆fH°298(A ik) of the species via

4. Group Additivity, in Terms of Group Additivity
Response Reactions

We are now in a position to formulate the following property
of GA RERs: proVided the GA is strictlyValid, the enthalpy
changes of GA RERs are equal to zero,i.e.,

The proof of this statement is given in the Appendix.

This property of the GA RERs may be used to reformulate
the GA methods in terms of GA RERs. The reasoning is as
follows. Consider the evaluation of the standard enthalpy of
formation of a given species, say A1, assuming that the stand-
ard enthalpy of formation of the remaining species A2, A3, ...,
An is known. First, we enumerate a complete set of GA
RERs involving species A1. Because the number of species
involved in a GA RER does not exceedq + 1 species, to
enumerate a complete set of GA RERs involving species
A1, we need to specify onlyq species from the remaining
n - 1. If theseq species are Ai1, Ai2, ..., Aiq (2 ei1 < i2 < ...
< iq < n), then, according to the above-described develop-
ment, the general equation of a GA RER involving species A1

is given by

Thus, the total number of GA RERs involving B1 does not
exceed

Now, assuming that the GA method is exact (that is, the
enthalpy change of every GA RER is equal to zero), the standard
enthalpy of formation of species A1 may be evaluated by solving
the following equation for∆fH°298(A1)calc:

In reality, the enthalpy change for every GA RER is not strictly
equal to zero, because the GA methods are approximate:

∆H(g) ) ∆H(A i1
,Ai2

,...,Aiq
,Aiq+1

)

) | Γi1,1
Γi1,2 ... Γi1,q

∆fH°298(A i1
)

Γi2,1
Γi2,2 ... Γi2,q

∆fH°298(A i2
)

... ... ... ... ...
Γiq,1

Γiq,2 ... Γiq,q
∆fH°298(A iq

)

Γiq+1,1
Γiq+1,2 ... Γiq+1,q

∆fH°298(A iq+1
)
| (13)

∆H(g) ) ∆H(A i1
,Ai2

,...,Aiq
,Aiq+1

) ) 0 (14)

g(A1,Ai1
,Ai2

,...,Aiq
) ) | Γ11 Γ12 ... Γ1q A1

Γi1,1
Γi1,2 ... Γi1,q

A i1

Γi2,1
Γi2,2 ... Γi2,q

A i2

... ... ... ... ...
Γiq,1

Γiq,2 ... Γiq,q
A iq

| ) 0 (15)

N )
(n - 1)!

q!(n - q - 1)!

| Γ11 Γ12 ... Γ1q ∆fH°298(A1)calc

Γi1,1
Γi1,2 ... Γi1,q

∆fH°298(A i1
)exp

Γi2,1
Γi2,2 ... Γi2,q

∆fH°298(A i2
)exp

... ... ... ... ...
Γiq,1

Γiq,2 ... Γiq,q
∆fH°298(A iq

)exp

| ) 0 (16)

ν1g11 + ν2g21 + ... + νngn1 ) 0

ν1g12 + ν2g22 + ... + νngn2 ) 0
·
·
·

ν1g1p + ν2g2p + ... + νngnp ) 0 (10)

ν1Γ11 + ν2Γ21 + ... + νnΓn1 ) 0

ν1Γ12 + ν2Γ22 + ... + νnΓn2 ) 0
·
·
·

ν1Γ1q + ν2Γ2q + ... + νnΓnq ) 0 (11)

g(A i1
,Ai2

,...,Ais+q
,Ais+q+1

) ) | Γi1,1
Γi1,2 ... Γi1,q

Bi1

Γi2,1
Γi2,2 ... Γi2,q

Bi2

... ... ... ... ...
Γiq,1

Γiq,2 ... Γiq,q
Biq

Γiq+1,1
Γiq+1,2 ... Γiq+1,q

Biq+1

|
) 0 (12)

N ) n!
(q + 1)!(n - q - 1)!
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Comparing eqs 16 and 17, we find that

whereδ(g) is the stoichiometric coefficient of species A1 in
the GA RERg(A1,Ai1,Ai2,...,Aiq) and is given by

As can be seen from eq 18, the enthalpy change of a GA RER
(∆H(g)) is nothing but a measure of the error of the GA
methods.

Solving eq 16 for every GA RER and taking the average
results in the final value of the standard enthalpy of formation
∆fH°298(A1)calc of species A1. Notice that, within the GA RER
approach, there is no need to introduce the GA values.

5. Examples

The above-described theoretical considerations are next
illustrated with the help of two examples. It should be noticed
that it is not our intention to compare the numerical output of
the GA RER approach with the conventional GA methods. A
thorough comparison of these approaches will be presented
elsewhere. Rather, the examples are mainly intended to illustrate
the technique of the GA RER approach.

5.1. Example 1.Consider the following hydrocarbons: A1,
2-methylpropane (-32.07 kcal/mol); A2, 2-methylbutane (-36.74
kcal/mol); A3, 2-methylpentane (-41.78 kcal/mol); A4, 3-me-
thylpentane (-41.13 kcal/mol); A5, 2-methylhexane (-46.51
kcal/mol); and A6, 3-methylhexane (-45.72 kcal/mol). The
values given in parentheses are the experimental standard
enthalpies of formation of the respective hydrocarbons, without
considering only the most stable conformer.3 For illustration
purposes, we consider here the Benson’s group classification,3

according to which saturated hydrocarbons are assumed to
contain primary (g1), secondary (g2), tertiary (g3), and quaternary
(g4) C atoms. Benson’s classification also postulates two
additional types of nonbonded atom interactions, namely, 1-4
(g5) and 1-5 (g6) interactions. Thus, the formula-group matrix
for this system is

Using the RowReduce[Γ′]//MatrixForm command inMath-

ematica,16 this matrix may be readily transformed to

It is seen that rankΓ′ ) 3; hence, an appropriate reduced
formula-bond matrix is

Now, by definition, a GA RER involves no more than four
species ((rankΓ) + 1 ) 3 + 1 ) 4) in this example;
consequently, the total number of GA RERs will not exceed
(6!/2!)/4! ) 15. For instance, the species A1, A4, A5, and A6

define the following GA RER:

The enthalpy change of this GA RER is equal to

It is seen that, although the enthalpy change of this GA RER is
quite small, it is not, however, equal to zero, reflecting, thus,
the simple fact that the GA is approximate. To estimate the
standard enthalpy changes of a certain species, say A4, from
the above-described GA RER, we assume that the enthalpy
change of this GA RER is precisely equal to zero and solve the
following equation forx ) ∆H°298(A4)calc:

The solution of this equation isx ) ∆H°298(A4)calc ) -40.64
kcal/mol. This value should be compared with the experimental
value,∆H°298(A4)exp ) -41.13 kcal/mol. Alternatively, we can
use eq 18 to determine the difference between the experimental
and calculated values of the standard enthalpy of formation
directly:

∆H(g) ) | Γ11 Γ12 ... Γ1q ∆fH°298(A1)exp

Γi1,1
Γi1,2 ... Γi1,q

∆fH°298(A i1
)exp

Γi2,1
Γi2,2 ... Γi2,q

∆fH°298(A i2
)exp

... ... ... ... ...
Γi1,1

Γi1,2 ... Γi1,q
∆fH°298(A iq

)exp

| * 0 (17)

∆fH°298(A1)exp - ∆fH°298(A1)calc ) 1
δ(g)

∆H(g) (18)

δ(g) ) | Γ11 Γ12 ... Γ1q 1
Γi1,1

Γi1,2 ... Γi1,q 0
Γi2,1

Γi2,2 ... Γi2,q 0
... ... ... ... ...
Γiq,1

Γiq,2 ... Γiq,q 0
|

Γ′ ) [ 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 -2 2 0 0 0 0 0

-1 1 1 0 0 0 0 0
0 -1 2 0 0 0 0 0

] A1

A2

A3

A4

A5

A6

Γ ) [ 1 0 0
0 1 0
0 0 1
1 -2 2

-1 1 1
0 -1 2

] A1

A2

A3

A4

A5

A6

g(A1,A4,A5,A6) ) | 1 0 0 A1

1 -2 2 A4

-1 1 1 A5

0 -1 2 A6
|

) -A1 + 3A4 + 2A5 - 4A6 ) 0

∆H(g) ) ∆H(A1,A4,A5,A6) ) | 1 0 0 ∆H°298(A1)
1 -2 2 ∆H°298(A4)

-1 1 1 ∆H°298(A5)
0 -1 2 ∆H°298(A6)

|
) -∆H°298(A1) + 3∆H°298(A4) + 2∆H°298(A5) -

4∆H°298(A6) ) -1.46 kcal/mol

| 1 0 0 ∆H°298(A1)
1 -2 2 x

-1 1 1 ∆H°298(A5)
0 -1 2 ∆H°298(A6)

| ) 0

∆fH°298(A4)exp - ∆fH°298(A4)calc ) -1.46
3

) -0.49 kcal/mol
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For a given species, this procedure should be done over a
complete set of GA RERs. The results of such an analysis for
all six species are summarized in Table 1. Notice that, from a
total of 15 possible GA RERs, only 13 are stoichiometrically
distinct.

5.2. Example 2.As a second example, consider the class of
chlorinated methanes: CH4 (-17.8 kcal/mol), CH3Cl (-20.0
kcal/mol), CH2Cl2 (-22.8 kcal/mol), CHCl3 (-24.6 kcal/mol),
and CCl4 (-22.9 kcal/mol), where the values given in paren-
theses represent the experimental standard enthalpies of forma-
tion of the respective species. For illustration purposes, we
consider here two different classifications of the groups that
are referenced further as the first and second approximations
and are similar to those proposed by Bozzelli and co-workers.17

First Approximation.First, consider the following three types
of contributions to the enthalpy:g1 ) H-C-H, g2 ) H-C-
Cl, andg3 ) Cl-C-Cl. Alternatively, this classification may
be treated as pair interaction among H and Cl atoms:g1, H...H;
g2, H...Cl; andg3, Cl...Cl. The following formula-group matrix
may be readily generated on the basis of this classification:

Using Mathematica with the RowReduce[Γ′]//MatrixForm com-
mand, we obtain

Thus, rankΓ′ ) 3 and an appropriate reduced formula-group
matrix is

By definition, a GA RER involves no more than four species
((rank Γ′) + 1 ) 3 + 1 ) 4) in this example. Consequently,
the number of GA RERs does not exceed the number of ways
four species may be selected from a total of five, i.e., (5!/4!)/1!
) 5. For instance, the first four species define the following
GA RER:

The enthalpy change of this GA RER is

This enthalpy change is directly related to the error of the
GA methods in the estimation of the enthalpy change of the
species. Thus, according to eq 18, the GA RERg(CH4, CH3Cl,
CH2Cl2, CHCl3) values predict the following errors in the
enthalpies of formation of the species involved in this
GA RER:

A complete list of GA RERs, along with the average errors in

TABLE 1: Complete Set of GA RERs, Enthalpy Changes, and Estimated Errors in the Enthalpy of Formation of the Species
Considered in Example 1

∆fH°298(A i)exp - ∆fH°298(A i)calc

GA RERs ∆H°j B1 B2 B3 B4 B5 B6

1. -B1 + 2B2 - 2B3 + B4 ) 0 -1.02 1.02 -0.51 0.51 -1.02
2. B1 - B2 - B3 + B5 ) 0 -0.06 -0.06 0.06 0.06 -0.06
3. 3B1 - 4B2 - B4 + 2B5 ) 0 -1.14 -0.38 0.29 1.14 -0.57
4. B1 - B2 - B4 + B6 ) 0 0.08 0.08 -0.08 -0.08 0.08
5. -2B1 + 3B2 - 2B5 + B6 ) 0 1.22 -0.61 0.41 -0.61 1.22
6. B1 - 4B3 + B4 + 2B5 ) 0 0.90 0.90 -0.23 0.90 0.45
7. B1 - 2B3 - B4 + 2B6 ) 0 1.18 1.18 -0.59 1.04 0.59
8. -B1 + 3B3 - B5 - B6 ) 0 -1.04 1.04 -0.35 1.04 1.04
9. -B1 + 3B4 + 2B5 - 4B6 ) 0 -1.46 1.46 -0.49 -0.73 0.37

10. B2 - 3B3 + B4 + B5 ) 0 0.96 0.96 -0.32 0.95 0.96
11. B2 - 2B3 + B6 ) 0 1.10 1.10 -0.55 1.10
12.-B2 + 2B4 + 2B5 - 3B6 ) 0 -1.38 1.38 -0.69 -0.69 0.46
13.-B3 + B4 + B5 - B6 ) 0 -0.14 0.14 -0.14 -0.14 0.14

av 0.51 0.45 -0.17 0.15 -0.04 0.62

Γ′ ) [1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 -3 3 0 0 0
3 -8 6 0 0 0

] CH4

CH3Cl
CH2Cl2
CHCl3
CCl4

Γ ) [1 0 0
0 1 0
0 0 1
1 -3 3
3 -8 6

] CH4

CH3Cl
CH2Cl2
CHCl3
CCl4

g(CH4,CH3Cl,CH2Cl2,CHCl3) ) | 1 0 0 CH4

0 1 0 CH3Cl
0 0 1 CH2Cl2
1 -3 3 CHCl3

|
) -CH4 - 3CH2Cl2 +

3CH3Cl + CHCl3 ) 0

∆H(g) ) ∆H(CH4,CH3Cl,CH2Cl2,CHCl3)

) | 1 0 0 -17.8
0 1 0 -20.0
0 0 1 -22.8
1 -3 3 -24.7

| ) 1.6 kcal/mol

∆fH°298(CH4)exp - ∆H°298(CH4)calc ) -1.6
1

) -1.6 kcal/mol

∆fH°298(CH3Cl)exp - ∆fH°298(CH3Cl)calc ) 1.6
3

) 0.5 kcal/mol

∆fH°298(CH2Cl2)exp - ∆fH°298(CH2Cl2)calc ) - 1.6
3

) -0.5 kcal/mol

∆fH°298(CHCl3)exp - ∆fH°298(CHCl3)calc ) 1.6
1

) 1.6 kcal/mol
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the estimation of the enthalpies of formation of species, is
presented in Table 2. It is seen that the adopted classification
of groups works well for the intermediate chlorinated methanes
but is poor for CH4 and CCl4.

Second Approximation.The accuracy of GA methods may
be increased upon acceptance of a more detailed classifica-
tion of the groups. Thus, we may replace the pair interaction of
atoms by a tri-atom interaction. As chronicled by Cox and
Pilcher18 in their now-classic volume on thermochemistry, tri-
atom additivity methods are decades old, commencing with early
work by Zahn nearly 70 years ago19 and evolving through
numerous extensions and amplifications. Although tri-atom
additivity is generally of higher accuracy than group addi-
tivity, it is considerably more complicated and the desired
input parameters and data are often absent. This classification
results in four contributions to the enthalpy:g4, CH3; g5, CH2-
Cl; g6, CHCl2; andg7, CCl3. The formula-group matrix in this
case is

After reduction, the formula-group matrix takes the form

Hence, rankΓ′ ) 4 and the reduced formula-group ma-
trix is

Because a GA RER involves no more than five species ((rank
Γ′) + 1 ) 4 + 1 ) 5) in this example, we conclude that, under

this classification, there is only one GA RER that is given by

The enthalpy change of this GA RER is

As can be seen, the enthalpy change of this GA RER is smaller
than the enthalpy changes of the GA RERs obtained within the
first approximation. This result means that the second ap-
proximation results in a more accurate estimation of the enthalpy
of formation of the species. In particular, the errors are as
follows:

Notice again that the GA methods work better for the intermedi-
ate chlorinated methanes.

TABLE 2: Complete Set of GA RERs, Enthalpy Changes, and Estimated Errors in the Enthalpy of Formation of the Species
Considered in Example 2

∆fH°298 - ∆fH°298(A i)calc

GA RER ∆H°j CH4 CH3Cl CH2Cl2 CHCl3 CCl4

first approximation
1. -CH4 - 3CH2Cl2 + CHCl3 + 3CH3Cl ) 0 1.6 -1.6 0.5 -0.5 1.6
2. -3CH4 - 6CH2Cl2 + CCl4 + 8CH3Cl ) 0 7.3 -2.4 0.9 -1.2 7.3
3. -CH4 - 2CHCl3 + CCl4 + 2CH3Cl ) 0 4.1 -4.1 2.1 -2.1 4.1
4. -CH4 - 8CHCl3 + 3CCl4 + 6CH2Cl2 ) 0 9.1 -9.1 1.5 -1.1 3.0
5. -CH3Cl - 3CHCl3 + CCl4 + 3CH2Cl2 ) 0 2.5 -2.5 0.8 -0.8 2.5

av -4.3 0.25 0.15 -0.6 4.2

second approximation
-CH4 - CCl4 - 6CH2Cl2 + 4CH3Cl + 4CHCl3 ) 0 -0.9 0.9 0.25 0.15 -0.25 0.9

Γ′ ) [ 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0

-1 4 -6 4 0 0 0
] CH4

CH3Cl
CH2Cl2
CHCl3
CCl4

Γ ) [ 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

-1 4 -6 4
] CH4

CH3Cl
CH2Cl2
CHCl3
CCl4

g(CH4,CH3Cl,CH2Cl2,CHCl3,CCl4)

) [ 1 0 0 0 CH4

0 1 0 0 CH3Cl
0 0 0 0 CH2Cl2
0 0 0 1 CHCl3

-1 4 -6 4 CCl4
]

) CH4 + CCl4 + 6CH2Cl2 -
4CH3Cl - 4CHCl3 ) 0

∆H(g) ) ∆H(CH4,CH3Cl,CH2Cl2,CHCl3,CCl4)

) [ 1 0 0 0 -17.8
0 1 0 0 -20.0
0 0 0 0 -22.8
0 0 0 1 -24.6

-1 4 -6 4 -22.9
] ) 0.9 kcal/mol

∆fH°298(CH4)exp - ∆fH°298(CH4)calc ) 0.9
1

) 0.9 kcal/mol

∆fH°298(CH3Cl)exp - ∆fH°298(CH3Cl)calc ) - 0.9
4

) 0.25 kcal/mol

∆fH°298(CH2Cl2)exp - ∆fH°298(CH2Cl2)calc ) 0.9
6

) 0.15 kcal/mol

∆fH°298(CHCl3)exp - ∆fH°298(CHCl3)calc ) - 0.9
4

) -0.25 kcal/mol

∆fH°298(CCl4)exp - ∆fH°298(CCl4)calc ) 0.9
1

) 0.9 kcal/mol
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6. Discussion and Concluding Remarks

From the above-described development, it follows that the
conventional formalism provided by the theory of RERs can
be naturally extended to include additional constraints. Thus,
one can define and generate a stoichiometrically unique and
finite set of RERs that additionally preserve the number and
types of groups. This new type of RER, referenced here as the
GA RER, provides a deeper insight into the conventional GA
methods. In particular, assuming that the main assumptions of
the GA methods are exactly valid should result in GA RERs
that have the remarkable property of being thermoneutral. This
observation allows an alternative formulation of the GA
methods, in terms of GA RERs. Namely, it has been proved
that the changes in the thermodynamic functions of the GA
RERs are related in a simple manner to the error of the GA
methods. As a result, the error of the GA methods, as well as
the thermodynamic properties of the species, may be easily
evaluated without any knowledge of the GA increments. The
GA RER approach also reveals the existence of a strong
interrelation between the stoichiometry of the system and the
accuracy of the GA methods. Thus, it appears that the higher
the stoichiometric coefficient of a species in a GA RER, the
higher the accuracy of the GA predictions for that particular
species. The immediate consequence of this finding is that, on
the basis of a purely stoichiometric analysis, one might predict
the species whose thermodynamic properties may be evaluated
with the highest accuracy.

Another important problem in this respect is the propagation
or cancellation of errors in the estimation of the enthalpy of
formation of a given species (say,∆fH°298(A1)calc) when the
enthalpy of formation of another species (say,∆fH°298(A2)exp) is
in error. Within the GA RERs, the effect of an error in
∆fH°298(A2)exp on the estimated value of∆fH°298(A1)calc is
explicitly given by eqs 17 and 18. An inspection of these
equations reveals that an error in∆fH°298(A2)expwill affect
∆fH°298(A1)calc only through those GA RERs that involve the
species A1 and A2 concomitantly. Again, the sign and absolute
value of the error are determined exclusively by the stoichi-
ometry of the GA RERs. In particular, as can be seen from eqs
17 and 18, the absolute value of the error is minimized by low
values of the stoichiometric coefficients of species A2 and large
values of the stoichiometric coefficients of A1.

Finally, a few words about the practical implementation of
the GA RERs formalism into computer software. Technically,
the GA RER formalism is easy to implement, because the
algorithm is formulated in terms of simple linear algebra.
Clearly, the success of the method crucially depends on the
selection of groups and reference species. Another important
aspect of the problem is the number of reference species. The
point is that an excessively large number of reference spe-
cies may result in a combinatorial explosion in the number of
GA RERs. It is, therefore, necessary to find a compromise
between the number of reference species, the accuracy of the
estimations, and the computational time. Work along this line
is in progress.

Appendix

Proof of Eq 14. Substituting eqs 3 and 5 into the first and last columns in eq 13, respectively, gives
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The second determinant may be presented as

It is seen that because

and

we have

Repeating the same treatment with the second column, we have
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The last two determinants are equal to zero for the same reasons as those for the determinant in eq A1.

Note Added after ASAP Posting: This article was released
ASAP on 3/8/2003 with an error in eq 4. The correct version
was posted on 3/11/2003.
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